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ABSTRACT 

Frac ture  properties a t  various angles to the rolling direction in 0.022-in. ­
(0.056-cm-) thick AIS1 301 60-percent cold-reduced stainless-steel  sheet were deter­
mined. Specimens 3, 6, and 12 in. (7.6, 15.2, and 30. 5 cm) wide were  tested at  -423', 
-320°, and 70' F (20, 77, and 294 K). A gradual increase  in yield and ultimate strengths 
was noted at  all tes t  t empera tures  as specimen orientation approached the t ransverse  
direction. Net f racture  strength reductions of as much as 34 percent of the room tem­
pera ture  values were  noted at cryogenic temperatures as the orientation of the cracked 
specimens approached the t ransverse  direction. 
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SUMMARY 

An experimental investigation w a s  carried out t o  determine the fracture properties 
at various angles to  the rolling direction in 0.022-inch- -(O.056-cm-) thick A I S  301 
60-percent cold-reduced stainless-steel sheet. Specimens 3, 6, and 12 inches (7.6, 
15.2, and 30. 5 cm) wide were tested a t  -423', -320°, and 70' F (20, 77, and 294 K). 
Critical crack lengths were measured with NASA continuity gages. The Griffith-Irwin 
theory w a s  used to  calculate fracture toughness values. 

Fracture toughness values did not vary significantly with specimen width, which in­
dicated that the small  3- by 12-inch (7.6- by 30. 5-cm) specimens a r e  of adequate s ize  
to  determine fracture toughness for  this material. No significant change in measured 
fracture toughness w a s  noted for crack lengths varying from approximately 0. 150 to 
4.32 inches (0 .381 to  10.98 cm). A gradual increase in yield and ultimate strengths w a s  
noted at all test  temperatures as specimen orientation changed from the rolling direction 
to the wansverse direction. Net fracture strength reductions of as much as 34 percent 
of the room temperature values were noted at cryogenic temperatures as the orientation 
of the cracked specimens approached the transverse direction. 

INTRODUCTION 

A number of austenitic stainless-steel alloys possess high strength-to-density ra­
tios at very low temperatures. The 301 stainless-steel alloy in a cold-worked condition 
is such a high-strength material. It has good mechanical properties and corrosion-
resistant characteristics. In view of its good formability, adequate weldability, and 
resistance to brit t le fracture, the 301 stainless-steel alloy offers useful properties for 
engineering applications. Because of these properties, 301 stainless steel  is used at 



subatmospheric temperatures in  many applications such as liquid propellant tanks, stor-: 
age vessels for natural gas, and equipment used in  refrigeration and polymerization of 
hydrocarbons. 

The usefulness of AISI 301 stainless steel  for structural  applications at cryogenic 
temperatures prompted the initiation of a research program at the NASA Lewis Research 
Center to  study its fracture  properties in 0.022-inch- (0.056-cm-) thick f l a t  sheet in a 
60-percent cold-reduced condition. The fracture toughness data were obtained at -320' 
and -423' F (77 and 20 K). Taken into consideration were such influential factors as 
sheet width, length of crack, and specimen orientation. Specimens 3, 6, and 12 inches 
(7.6, 15.2, and 30. 5 cm) wide were tested to  determine the minimum specimen s ize  to 
ensure valid toughness values. Through-the-thickness slots of various lengths were fa­
tigue cracked to  simulate the most critical f l aws  the mater ia l  would be expected to  exper­
ience. 

Previous investigations (refs. 1and 2) disclosed that cold-rolled AISI 301 stainless-
s teel  sheet is anisotropic, the transverse orientation being considerably more notch sen­
sitive than the longitudinal orientation (rolling direction). Only the longitudinal and 
t ransverse orientations were studied. A previous NASA Lewis study (ref. 3) investigated 
AISI 301 stainless-steel tanks that were spiral  welded with an 11' helix angle. In the 
present report, the effect of specimen orientation at various angles (including 11') to the 
rolling direction on both notched and smooth properties w a s  examined a t  70°, -320°, and 
-423' F (294, 77, and 20 K). 

The Griffith-Irwin theory (ref. 4) w a s  used to  determine the material  toughness. At 
the present time, this theory appears to be the most appropriate method for calculating 
plane-stress fracture toughness. 

MATERIAL 

The test  specimens were fabricated from AISI 301 stainless-steel 60-percent cold-
reduced sheet with a nominal 0.022-inch (0.056-cm) thickness. The chemical analysis, 
as furnished by the material  supplier, is given in  table I. 

TABLE I. - COMPOSITION OF A I S  301 60 -PERCENT 

COLD- REDUCED STAINLESS S T E E L  

~ 

Carbon Phosphe rus  Sulfur Silicon Chromium Nickel Manganese 

1 .44  

2 




The exact processing schedule for  this heat of mater ia l  is not available. However, 
the normal processing method employed by the mater ia l  supplier for cold reducing this 
alloy is as follows: A continuous band of material  0. 110 inch (0.279 cm) thick is normal­
ized at 2050' F (1390 K) for  approximately 60 seconds. A reversing mill  is used t o  rol l  
the material  to  0.075 inch (0.191 cm) with three to  four passes. Surface defects a r e  re­
moved by using a belt grinder. The material  is then annealed at 1850' F (1278 K) for 
30 seconds. Further thickness reduction is made by rolling the material  to  a nominal 
0.060-inch (0. 152-cm) thickness, followed by another annealing period of 30 seconds at 
1850' F (1278 K). Final reduction to 0.022-inch- (0.056-cm-) thick sheet is made by 
passing the material  through the reversing mill  another four t o  seven times. The actual 
amount of cold reduction following the last annealing process w a s  determined by the ma­
ter ia l  supplier to  be 64 percent. 

TEST SPECIMENS 

Sheet specimens for determining the effect of orientation to the rolling direction on 
mechanical properties and for  determining fracture toughness properties a r e  shown in 
figures 1and 2. Both smooth and cracked tensile specimens for the directional study 

-1 
-~ 0 0 0 0 0  

I 
3 

Figure 1. - Fracture toughness specimens. (All dimensions are in  inches (cm).) 
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I ,r Diam 1(25) I 

k- 8 (20.3)- J 

(a) Smooth specimen. 

I 

LElectrical -discharge-machined slot; 
length, 0.8 (2.0) plus fatigue extension 

(b) Center-cracked specimen. 

Figure 2. - Directional specimens. (All dimensions are in inches (cm).) 

were machined at Oo, 1l0, 28O, 45O, 62O, 79O, and 90' t o  the rolling direction. The 
3-inch- (7.6-cm-) wide cracked tensile specimens were tested with nominal l-inch 
(2. 54-cm) cracks to determine the effect of specimen orientation on notch strength. Spec­
imens tested to  obtain fracture toughness values were 3, 6, and 12 inches (7.6, 15.2, 
and 30.5 cm) wide. Centrally located through cracks in these specimens ranged from 
0. 150 inch (0.381 cm) long t o  approximately one-third of the specimen width in length. 
The fracture toughness specimens were machined at 11' to  the rolling direction of the 
material. This direction corresponded to  the hoop direction in spiral-wound cylinders 
tested and reported in a previous NASA study (ref. 3). The cracked specimens were pro­
vided with various length center-through slots that were low-stress tension-tension fa­
tigued to produce the desired crack lengths. The through slots were produced by 
electrical-discharge machining. The fatigue-cracking process followed the ASTM guide­
line (ref. 5) of less than 0.050-inch (0. 127-cm) growth in the last 50 000 cycles. The fa­
tigue crack length w a s  controlled by using a single-element foil gage, as discussed in 
reference 3. 

TEST APPARATUS AND PROCEDURE 

The smooth directional specimens were tested in a 60 000-pound- (270 000-N-) 
capacity hydraulic tensile testing machine. Tests  were conducted a t  70°, -320°, and 
-423' F (294, 77, and 20 K). Cryogenic tes ts  were conducted in a vacuum-jacketed . 
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Figure 3. - 6-lnch- (15.2-cm-I wide specimen above cryogenic liquid container 
and 400 000-pound (1780 000-Nl testing machine. 

cryostat. Liquid level w a s  maintained several  inches above the upper specimen gr ip  to 
ensure total immersion of the specimen in the cryogenic fluid. Each specimen w a s  
equipped with a differential transformer extensometer with a 2-inch (5. l-cm) gage length. 
The 3-inch- (7.6-cm-) wide specimens were tested at 70°, -320°, and -423' F (294, 77, 
and 20 K) in a 20 000-pound- (90 000-N-) capacity hydraulic tensile testing machine. The 
6- and 12-inch- (15.2- and 30. 5-cm-) wide specimens were tested at  -320' and -423' F 
(77 and 20 K) in a 400 000-pound- (1780 000-N-) capacity screw-powered tensile ma­
chine. The 400 000-pound (1780 000-N) testing machine and the cryostat used for testing 
the 6-inch- (15.2-cm-) wide specimens a r e  shown in figure 3. 

Forman (ref. 6) found that measured plane-stress fracture toughness values were 
affected by lateral  buckling of the edges of the crack out of the plane of the sheet. For 
this reason, an antibuckling fixture w a s  clamped lightly to  the surface of each specimen 
at the crack. This device minimized buckling of the plane of the sheet. 

A vertical  knife-edge fixture such as that shown in figure 4(a) w a s  applied to the sur­
face of the 3-, 6-, and 12-inch- (7.6-, 15. 2-, and 30. 5-cm-) wide specimens containing 
cracks less  than 0.250 inch (0.64 cm) in length. The flat surface plate fixture, held to­
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-1541 
(a) For cracks less than 0.250 inch (0.64 cm) long. 

(b) For cracks greater than 0.250 inch (0.64 cm) long. 

Figure 4. - Antibuckling fixture. 

gether with screws located through the machined slot, is shown in figure 4(b). This fix­
ture  w a s  used for  specimens containing cracks greater  than 0.250 inch (0.64 cm) in 
length. The data points indicated by footnote b in table I1 were obtained with the fixture 
shown in figure 4(a), although the crack lengths were greater  than 0.25 inch (0.64 cm). 
Insufficient crack support for these specimens is believed to have caused out-of -plane 
buckling, which resulted in premature fracture. Therefore, these data a r e  not included 
in the calculation of plane-stress f racture  toughness Kc. 

Subcritical crack growth w a s  measured by means of a multiple-element electrical 
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TABLE II. - FRACTURE PROPERTIES OF 3-, 6-, and 12-INCH- (7.6-, 15.2-, AND 30.5-CM-) WIDE 

SPECIMENS O F  0.022-INCH- (0.056-CM-) THICK A I S  301 60-PERCENT 

COLD-REDUFED STAINLESS STEEL 

[Specimen orientation, 11' t o  the rolling direction. ] 

(a) U. S. Customary Units 

pecimei Initial :ritical k i t ica :  Gross Tet f rac- Ratio of ne Nominal Frac ture  Lndicated 
width, c rack  crack c rack  racturi  t u r e  f racture  E ractur e toughness, c rack  

W, length ength, .ength- s t ress ,  ;trength; strength oughness KC length, 
in. 	 2ao, 2% o-widtl fl, 'ns, to  yield Kcn, k s i 6  2a 

in. in. ratio,  ksi  ksi  strength,  ksi 6 in.
g' 

2a/W ~ I l S / U Y S  

2.948 0.498 0.752 0.255 159 2 14 0.895 166 2 17 0.893 
2.948 .488 .690 .234 157 205 .859 161 200 .807 
2.973 1.024 1.298 .437 110 196 .819 166 206 1.392 
2.974 1.027 1.322 .445 110 199 .831 167 211 1.419 

2.973 1.039 1.329 .447 110 200 .836 169 213 1.427 
5.998 . 114 .150 .025 248 2 54 1.062 154 177 .618 
5.998 .258 _ _ _ _  198 _ _ _ _ _  156 _ _ _  _ _ _ _  
5.999 1.007 1.344 .224 114 146 .612 156 b184 1.424 

5.999 2.006 2. 418 .403 76. 9 129 .539 153 b176 2.482 
12.00 .983 1.343 .112 126 142 ,596 171 20 1 1.443 
12.00 1.998 2.343 . 195 100 124 . 518 189 207 2.442 
12.00 3.969 4.301 .358 68. 1 106 .444 188 199 4.383 

-423 3.006 0. 135 _ _ _ _ _  _ _ _ _ _  232 - _ _  _-- - - 137 _ _ _  _ _ _ _ _  
3.007 . 267 0. 340 0.080 192 2 16 0.815 146 166 0.489 
3.006 .263 .385 . 128 192 220 .831 146 179 . 572 
3.010 .264 . 356 .118 194 220 .830 148 174 .519 
2.948 .496 .614 . 208 156 197 .744 157 177 .748 

2.948 .515 .639 .217 149 190 .716 150 171 .760 
2.947 1.024 1. 131 .384 106 172 .648 156 168 1.229 
2.947 1.024 1.258 .427 110 192 .726 163 194 1.387 
2.948 1.028 1. 162 .394 110 182 .686 164 181 1.275 
5.999 .244 .340 .057 194 205 .775 140 166 .490 

6.000 .482 .739 .123 158 180 .680 153 191 .897 
5.999 1.014 1. 197 .200 109 136 .513 147 '161 1.293 
5.999 2.027 2.232 .372 75.4 120 .453 150 160 2.319 

12.00 .510 .731 .061 158 169 .636 157 188 .884 
12.00 .999 1.190 .099 120 133 .501 159 174 1.306 
12.00 1.973 2.219 .185 91.5 112 .424 170 181 2.337 
12.00 4.001 4.324 .360 64.3 101 .379 177 187 4.438 

~ 

aBased on cr i t ical  crack length. 
bInsufficient c rack  support. 
'No crack  support. 
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T A B U  E. - Concluded. FRACTURE PROPERTIES O F  3-, 6-, AND 12-INCH- (7.6-, 15.2-

AND 30.5-CM-) WIDE SPECIMENS OF 0.022-INCH- (0 .056-CM-)  THICK AISI  301 

60-PERCENT COLD-REDUCED STAINLESS STEEL , 

[Specimen orientation, 11’ t o  the rolling direction.] 

(b) SI Units 

Tes t  jpecim 2rit ic Gr os Jet fral Eatio of r Nominal Fracturi Indicated 
tempei width, cracl  ractu ture  f rac tur  fracturc .oughnes: c rack  
ature,  w, length strest krengtl s t rengt  toughnes KC’ length, 

K cm 	 o-wid 0 ,  ‘nsr to yielc Kcnj MNm -3/: 2a  
g ’ 

2a/& uns/uyz kN 

77  7.481 1 .265 1. 91( 0. 251 109 148 0. 895 182 238 2.268 
7.481 1. 2 4 0  1. 75: .23‘ 108 14  1 . 8 5 9  177 2 20 2.050 
7 .55  2 . 6 0 1  3.29‘ .43’ 75. I 135  . 8 1 9  182 226 3.536 
7.55L 2.609 3. 351 . 441 75. I 137 . 8 3 1  184 232 3 .604 

7 . 5 5 :  2 . 6 3 9  3.37f .44’ 75.1 138 . 8 3 6  186 234 3.62: 
15.23: . 2 9 0  . 3 8 :  .02: 17 1 175 1 . 0 6 2  169 195 1.57c 
15.23: . 6 5 5  137 - - - -_  17 1 _ _ - - _ _ _ _  

ratio N/cn kN/cm strengtl  cm 

15. 2 3 i  2. 558 3. 41L .224 78. f l o  1 . 6 1 2  17 1 b202 3.6 17 

15. 237 5 .095 6. 14; .40: 53. t 88. 9 . 5 3 9  168 b193 6.304 
33.00 2.497 3 .411 . 112 86. Z 97.9 .596 188 2 2 1  3.665 
33 .00  5.075 5.951 . 195 69. C 85. 5 . 518 208 227 6.203 
33 .00  0 . 0 8 1  10.925 .35E 47. c 73. 1 . 4 4 4  207 2 19 11.133 

20  7.635 0 .343 _ _ _ _ _  160 _ _ _ _ _  _ _ _ _ _  1 5 1  - - _ _  _ _ _ - - _  
7 . 6 3 8  . 6 7 8  0 .864 0 . 0 8 0  132 149 0 .815 160 182 1 .242 
7 .635 . 6 6 8  . 9 7 8  . 128 132 152 . 8 3 1  160 197 1 .453 
7 . 6 4 5  . 6 7 1  . 9 0 4  . 118 134 152 . 830 163 1 9 1  1. 318 
7 .488 1 .260 1.560 . 2 0 8  108 136 . 7 4 4  173 195 1.890 

7 .488 1.308 1 .623 . 2 1 7  103 13 1 . 7 1 6  165 188 1. 930 
7 . 4 8 5  1 .601 2. 873 . 3 8 4  73. 1 119 . 6 4 8  17 1 185 3. 122 
7 .485 2 .601 3. 195 . 4 2 7  75. 8 132 . 7 2 6  179 2 13 3. 523 
7 . 4 8 8  2 .611 2 . 9 5 1  . 3 9 4  75. 8 125 . 6 8 6  180 199 3 . 2 3 9  

15.237 . 6 2 0  . 8 6 4  . 0 5 7  134 14 1 . 7 7 5  154  182 1 .245 

15.240 1.224 1 .877 . 123 LO 9 124 . 6 8 0  168 2 10 2.278 
15.237 t .576 3.040 . 2 0 0  75 .2  93. 8 .513 162 177 3 .284 
15.237 i. 149 5 .670 . 372 52 .0  82. 7 . 4 5 3  16 5 176 5. 890 
33.00 1.295 1 .857 . 0 6 1  .09 I17 . 6 3 6  173 207 2 .245 
33.00 ! .537 3.023 . 0 9 9  82. 7 91. 7 . 5 0 1  175 1 9 1  3.317 
33.00 1.011 5.636 . 185 63. 1 77. 2 . 4 2 4  187 199 5.936 
13.00 1.163 10.983 . 3 6 0  44.3 69. 6 . 3 7 9  195 206 11.273 

aBased on crit ical  c rack  length. 
bInsufficient c rack  support. 
‘No crack  support. 
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resistance continuity gage mounted at the tip of the crack. Reference 7 gives more de­
tailed information concerning the NASA continuity gage. The analytical correction equa­
tion given in  equation (1)of this reference w a s  used to  correct all crack-length data. 

ANALYTICAL PROCEDURE 

The Griffith-Irwin expression (ref. 4) for the relation between fracture toughness and 
failure s t r e s s  for an infinitely wide sheet with a central  crack is 

where u is the gross  failure s t r e s s  normal to the crack, and a is one-half the cri t ical  
crack length. A modified Griffith-Irwin expression can be used to account for the finite 
width of the sheet and for the plastic zone that is usually present at the crack tip. Using 
the secant width correction factor presented by Feddersen in the discussion portion of 
reference 5 gives the equation 

KC = u d %  

where 

2 
-a = a + L(:) 

27r u 

In equation (2), W is the specimen width, and u
YS 

is the 0. 2-percent offset yield 
strength of the material. When the cri t ical  crack length is not known, a nominal fracture 
toughness is sometimes determined by using the initial half-crack length ao. The equa­
tion for such a nominal fracture toughness is 

where 

-a. = a. + -(?)2 
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RESULTS AND DISCUSSION 

Smooth Proper t ies 

The 0.2-percent yield and ultimate strength properties of the material  are shown in 
figure 5. The yield and ultimate strengths are plotted as a function of angle to the rolling 
direction for tes t s  at -423', -320°, and 70' F (20, 77, and 294 K). 

The average values of yield and ultimate strength were determined from at least 
three tes t s  at the given specimen orientation for  each tes t  temperature. Table 111gives 
the individual test results.  The yield strengths, in general, show a gradual increase as 
the specimen orientation approaches the t ransverse direction. Comparing the average 
longitudinal yield strength a t  -423' F (20 K) of 258 ksi  (178 kN/cm2) with the average 
transverse (90') value of 293 ksi  (202 kN/cm 2) shows a 12-percent increase. A similar 
comparison of the -320' F (77 K) data shows an 11-percent increase. Only slight varia­
tions appeared in the room temperature data for  those orientation tested. 

Ultimate strengths varied less  with specimen orientation than did the yield strengths. 
Examination of the resul ts  presented in figure 5 shows a minimum value occurring at 
about 45'. However, for  some unexplained reason, the scatter of the data at this orien­
tation w a s  considerably greater  than that for the other orientations and may account for 
the low average value. The average t ransverse strength at -423' F (20 K) exceeded the 

Test temperature 
O F  (K) 

n -423 (20) 
0 -320 (77) 
0 70 (294) 

Solid symbols denote average 0.2-percent yield strength 
Open symbols denote average ultimate strength 

E Data range at -423" and 70" F (20 and 294 K) 
360 - 7 Data range at -320" F (77 K) 

N5 220 320 
.....
5 

------*,A1 
28 45 62 79 90 

140 200 I I I l l I I  I 4,---'I
~~ 

0 10 20 30 40 50 60 70 a 90 
Angle to rolling direction, deg 

Figure 5. - Variation of yield strength and ultimate strength with angle to rolling direction for 
0.022-inch- (0.056-cm-) thick AIS1 301 @-percent cold-reduced stainless-steel sheet 
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TABLE III. - SMOOTH PROPERTIES OF 0.022-INCH-(0.056-CM-) 

THICK AISI 301 60-PERCENT COLD-REDUCED STAINLESS-mEEL 

SHEET AT VARIOUS ANGLES TO ROLLING DIRECTION 

(a) U.$. Customary Units 
-

Test  Angle to  0.2- Jltimate Tes t  Angle t o  
temper- rolling Percent  ,trength temper rolling 
ature, direction, yield 
OF deg strength ksi 

OYS’
ksi  

198 239 
202 239 
2 19 238 
206 239 

2 17 239 
2 12 23 1 
2 16 238 

Averagerr 215 236 

204 24 1 
199 239TAverage 
203 240 

2 12 247 
2 12 245 
211 245 

Average 2 12 246 

-320 I O 

235 
228 
226 

324 
320 
3 11 

Average 230 320 

205 240 

234 33 1 
242 329 

-320 I l1 243 328 
Aver age 239 329 

ature, direction, 
OF deg 

-320 79 

Average

T
Average 

-423 0 

-423 11 

-423 1 28 
Average 

0.2- 7ltimate 
Percent  strength, 

yield Vu,
strength, ksi 

OYS’ 
k s i  

246 327 
243 329 
249 329 
246 328 

240 333 
254 329 
27 1 332 
255 331 

26 1 329 
2 56 341 
2 56 341 
258 337 

257 324 
215 321 
263 324 
261 320 
265 322 

26 1 334 
210 336 
261 334 
266 335 

214 329 
255 329 
268 334 

Average 266 331 
239 330 
239 330 282 341I241 329 281 339

I Average Average 
283 340 

248 288 
243 327 277 344 
242 321 279 344 

Average 244 3 12 279 350 

250 330 
Average 278 346 

250 329 292 349 

240 330 I 286 339 

250 329 293 359 
Average 250 329 I 294 352 

Average 293 353 
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temper- 

TABLE m. - Concluded. SMOOTH PROPERTIES OF 0.022-INCH­

(0.056-CM-) THICK AISI 301 60-PERCENT COLD-REDUCED 

STAINLESS-STEEL AT VARIOUS ANGLES TO 

ROLLING DIRECTION 

(b) SI Units 
. .  - _ _  

Angl 0.2- Ultimate T e s t  
temper- roll Pe rcen  strength ature,  1;; 0.2- Ultimatl 

rol l i  Percent strengtk 
direc yield 

OU' yield 
de s t rengt  K strengtl 

Tes t  

a ture ,  
K kN/cm2 

a Y s '  
kN/cm' 

137 165 

139 165
-7151 164
Average 
142 165 

-

294 11 150 165 
146 159 
150 164 

166 227 
Average 165 228t77 

156 219 
Average 159 221 

161 228 
167 227 
168 226 

Average 165 227 

165 228 
165 228 

Average 148 163 

141 166 
137 165 
141 165 

Average 140 165 

146 170 
146 169 
145 169 
146 170 

162 223 
157 221 

45 171 199 
168 225 
167 22 1 
168 215 

172 228 
172 227 
172 227 
172 227 

_ - .. __ 

a" 

m / c m 2  

uYs '  , 
kN/cm' 

170 
168

77 I -7; 172 
Average 170 

165 

175
"I 187
Average 
176 

180 
1777-
Average O-	 177 
178 

177 
190 
181T 184Average 
183 

180 
186-I- Average 184 
183 

190 
176I185Average 
183 

194 
194-r 197Average 
195 

191 
192 

2o I I9 192 
Average 192 

201 
2027- 203Average 
202 

- ­

225 
227 
227 
226 

230 
227 
229 
228 

227 
235 
235 
232 

223 
22 1 
223 
22 1 
222 

230 
232 
230 
231 

227 
227 
230 
228 

235 
234 
234 
234 

237 
237 
241 
239 

241 
248 
243 
243 
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a, 

Y) 

c 

a, 

L 

average longitudinal value by 5 percent. At -320' F (77 K), the difference was only 
3 percent. 

The effect of specimen orientation on both yield and ultimate strength seemed to  be 
more  pronounced at cryogenic temperatures. This effect may be associated with the 
martensitic formation that has been found to  accompany tensile strain at low tempera­
tu re s  in this material. This phenomenon, which tends to  strengthen the material, var ies  
with specimen orientation. 

Net Fracture Strength 

Resistance to  brittle fracture appears t o  be highly directional. The data presented 
in figure 6 w e r e  obtained from 3-inch- (7.6-cm-) wide specimens with nominal 1-inch 
(2. 54-cm) center cracks. Examination of the room temperature data shows an apparent 
maximum net fracture strength at about 28' to  the rolling direction, with the lowest value 
in the t ransverse direction. The specimens tested at -320' and -423' F (77 and.20 K) re­
tained approximately 90 percent of the room temperature net fracture strength at the 
rolling direction orientation. However, the net f racture  strengths at cryogenic tempera­
ture  for the transverse direction were only about 65 percent of the room temperature 
values. Based on these data, a helix angle of up to  28' appears to  be suitable for the 
spiral-weld tank configuration without a significant loss  in notch strength being suffered. 

This high transverse notch sensitivity is believed to  be associated with two important 
factors. The first ,  previously mentioned with regard to  the smooth tensile properties, is 
the anisotropy that is manifested in the material  properties. Commonly referred to  as 
crystallographic anisotropy, i t  deals with the arrangement of atoms or crystals  that occur 

Test temperature 

220 
._ 
Y 

0­

0- 1 2 0 t  5- 170 m 
c 
a,

L 

Y)

100 
L 


3L I 130u m 
L 

cE a,
L z 


90 
0 10 30 50 60 70 90 

Angle to rolling direction, deg 

Figure 6. - Variation of net fracture strength (based on initial crack length) with angle to roll ing direc­
tion for 0.022-inch- (0.056-cm-) thick AIS1 301 for 60-percent cold-reduced stainless-steel 3-inch­
(7.6-cm4 wide specimens with nominal 1-inch (254-cm) cracks. 
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TABLE IV. - FRACTURE PROPERTIES OF 3-INCH- (7.6-CM-) WIDE 

SPECIMENS O F  0.022-INCH-(0.056-CM-) THICK AIS 301 

60-PERCENT COLD-REDUCED STAINLESS STEEL 

AT VARIOUS ANGLES TO ROLLING DIRECTION 

(a) U. S. Customary  Units 

Tes t  Angle to  Thickness Initial G r o s s  Net f r ac - Ratio of 
t emper - roll ing in. c r ack  fracturc t u r e  let f rac-
a tu re ,  l irection, length stress, strength,  t u r e  

O F  deg 
in. 

2ao, 0, 

ks i  
ns)
ks i  

U jtrength 
:o yield 
jtrength, 

Jns/ays 

70 0 0.0226 1.003 122 184 0.855 
11 .0227 .966 123 182 .846 
28 .0223 1.016 136 206 .958  
45 .0227 1.006 135 203 .944 
62 .0224 1.018 124 187 . 869 
79 .0224 1.020 111 168 .781  
90 .0226 1.026 104 158 .734 

-320 0 0.0225 0.992 115 171 0.715 
11 .0229 1.027 110 168 .702 
28 .0224 1.029 114 174 .728 
45 .0226 1.014 105 159 .665 
62 .0224 1.010 84. 2 127 .531  
79 .0225 1.012 71. 1 107 .447 
90 .0225 1.025 70.7 107 .447 

. .  

-423 0 0.0225 1.017 109 165 0.622 
11 .0227 1.024 106 162 .611  
28 .0223 1.034 110 168 .633 
45 .0224 1.010 98. 1 148 .558 
62 .0224 1.009 82.7 125 .471  
79 .0224 1.010 71. 5 107 .403 

- 90 .0226 1.034 67.4 103 .388  

aBased on init ial  c r ack  length. 
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TABLE IV. - Concluded. FRACTURE PROPERTIES OF 3-INCH­

(7.6-CM-) WIDE SPECIMENS OF 0.022-INCH- (0.056-CM-) 

THICK AISI 301 60-PERCENT COLD-REDUCED STAINLESS 

STEEL AT VARIOUS ANGLES T O  ROLLING DIRECTION 

'b) Si Units 
__ 

T e s t  Angle  to  Thickness  
.emper- roll ing c m  
a t u r e ,  iirection, 
K deg 

294 0 0.0574 
11 .0577 
28 .0566 
45 .0577 
62 .0569 
79 .0569 
90 .0574 

77 0 0.0572 
11 .os82 
28 .0569 
45 .0574 
62 .0569 
79 .0572 
90 .0572 

20 0 0.0572 
11 .0577 
28 .0566 
45 .0569 
62 .0569 
79 .0569 
90 .0574 

'Based on init ial  c r a c k  length. 

~ 

[nit ial  Gross  Jet frac- Ratio of 
:rack fracturc t u r e  let f rac­
length, s t r e s s ,  trength,  a tur  e 
2a,, u, 'ns7 itrength 
c m  kN/cm2 kN/cm2 to yield 

itrength, 

" d a y s  
~ 

2.547 84. 1 127 0.855 
2.454 84. 8 125 .a46 
2.581 93 .8  142 .958 
2.555 93 .1  140 .944 
2.586 85.5 129 .a69  
2.591 76. 5 116 . 7 8 1  
2.606 71.7 109 .734 

2.520 79. 3 118 0.715 
2.609 75. a 116 .702 
2.614 78.6 120 .728  
2. 576 72. 4 110 .665 
2. 565 58. 1 87.6 .531  
2. 570 49.0 73. 8 .447 
2.604 49.7 73. a .447 

2.583 75.2 114 0.622 
2.601 73 .1  112 . 6 1 1  
2.626 75. a 116 .633  
2. 565 67.6 102 .558 
2.563 57.0 86.2 .471  
2.565 49.3 73. a .403 
2.626 46. 5 71.0 . 3 a 8  

~ 
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i n  multiphase microstructures. Differences in the longitudinal and transverse ductilities 
in  s teels  have been related to  this metallurgical characteristic. The second factor that 
may influence resistance t o  brittle fracture is concerned with the extent of high s t r e s s  
concentration near the crack tip and its relation t o  the transformation of the austenitic 
phase to martensite in this metastable alloy when tested at cryogenic temperatures. 
These factors, along with the variation of crack orientation t o  rolling direction and grain 
boundaries, produce a complex interrelation that affects the directional properties of 
this sheet material. 

The ratios of net f racture  strength to yield strength a r e  given in  table IV. This ra t io  
is sometimes used as an indication of notch toughness. By this measure, a relatively 
high degree of toughness is maintained up to about 45' to the rolling direction for all test 
temperatures. 

Frac ture  Toughness Data 

The fracture test data a r e  listed in  table II. In figures 7(a) and (b), the plane-stress 

Specimen width, 

220 r W, 
in. (cm) 

200 Kc, average a 0 

, 95  KC, average A 
N 

P 7 5 - - - - - - - - ­e , A I  I I I I , I I I I I I , I l lg 180 Y 
% 
0 

vi (a) Test temperature, -423" F (20 K l  

.A 
m Specimen width,  W, 

.A c
1 in. ( c m lc in 

zm 0 A 3 (7.61 
0 12 115.2)z 240 

2 220 1.05 Kc. average - _ - _ _ _ _ _ _ _ _- - - - - - - - n  

n 
Y n '2 3 1  a -I ~~ 

Kc, average 

A ­

0220 average a 0.95 K,,- - _ _ _ _ _ _ _ _ _ _ _ _ _ _  

210 I . I I I I I I I I  1 I I 1 I I I I I  
.1 . 2  . 4  . 6  . 8  1 2 4 6 8 1 0  

Cri t ical  crack length, 2a, in. 

U I I I I l l . I  
. 4  . 6  . E  1 2 4 6 8 1 0  M 

Cri t ical  crack length, 2a, c m  

(bl Test temperature, -320" F (77 Kl. 

Figure 7. - Fracture toughness as func t i on  of c r i t i ca l  crack l eng th  for  
0.022-inch- (0.056-cm-) th i ck  AIS1 301 @-percent cold-reduced stainless 
steel. Specimen orientation, 11" to ro l l i ng  direction. 
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f racture  toughness Kc is plotted as a function of the cri t ical  crack length 2a for -320' 
and -423' F 77 and 20 K), respectively. An average fracture  toughness of 178 k s i p  
(195 M"-3I2, w a s  determined from the test data at -423' F (20 K), excluding specimens 

that had no notch support to  prevent buckling (see table II). Examination of the tes t  re­
sults indicates that the Kc values tend to  increase somewhat as the value of crack length 
2a increases  from 0. 150 to  4.32 inches (0.381 to 10.98 cm). The data, however, do not 
vary excessively, as indicated by a variation of l e s s  than *9 percent from the average 
fracture  toughness value. Although the data a r e  insufficient for a clear definition of a 
s imilar  trend for tes t s  conducted at -320' F (77 K) and presented in figure 7, the data fall 
within 15 percent of the average calculated value of 207 k s i c  (227 M"-3/2).The 
result  of one tes t  was not included in the average for  the -320' F (77 K) data because the 
net f racture  s t r e s s  exceeded the yield strength of the material  as can be seen in table II. 

The rat ios  of net f racture  strength to yield strength for  the data reported at both test  
temperatures of -320' and -423' F (77 and 20 K) listed in table II show values exceeding 
the 0.80 criterion recommended in reference 8. However, the values of Kc calculated 
were within acceptable scatter limits when compared with the results of tes t s  that pro-

C- 66-1447 
__.

Figure 8. -Yield zone in 0.022-inch- (0.056-cm-) thick AIS1 301 60-percent cold-reduced stainless steel. Test temperature, -423" F(20  K). 
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duced ratios of net f racture  strength to  yield strength l e s s  than 0.8. The criterion 
(based on plastic zone s ize  and discussed in ref. 5) to  determine appropriate specimen 
size for plane-strain f racture  toughness testing is believed to  be  a more reasonable 
method for deciding the validity of a plane-stress toughness test  also. This method, un­
fortunately, requires extensive testing of the particular alloy to  determine the required 
relations between specimen width, crack length, and plastic zone s ize  (Kc/a )2 for  

YS 
valid f racture  toughness specimens. Figure 8 shows the yield zone at the crack t ip of a 
30 1 stainless-steel specimen tensile loaded in a liquid-hydrogen environment to a s t r e s s  
level of 147 ksi  (101 kN/cm2). This yield zone w a s  of sufficient size for tes ts  a t  -320' 
and -423' F (77 and 20 K) to cause premature failure of the continuity gage elements used 
to  measure crack growth. The analytical calibration for  AISI 301 stainless steel  in ref­
erence 7 accounts for this premature failure. This narrow line of yielding a t  the crack 
tip referred to  as "catastrophic shear" is discussed in reference 9. 

In figure 9, the nominal fracture toughness Kcn, computed by using equation (3), is 
plotted as a function of the initial crack length 2a0 for both test  temperatures. The re ­
sults at -423' and -320' F (20 and 77 K) show that the values of Kcn increase with in­
creasing crack length. Thus, it is impossible to pick a constant Kcn to  be used for de­
sign purposes. 

The curves in figure lO(a) a r e  the result  of applying the average value of Kc, calcu­
lated by using equation (2), to predict the gross  f racture  s t r e s s  of specimens having 
various combinations of crack length and width. The tests were conducted at a tempera­
ture  of -423' F (20 K). Curves a r e  drawn for 3-, 6-, 12-inch- (7.6-, 15.2-, and 
30.5-cm-) wide sheet specimens. The agreement between predicted and experimental 
values of f racture  s t r e s s  is good (even for short crack lengths where fracture s t r e s s  ap­
proaches the yield strength), except for the two 6-inch- (15.2-cm-) wide specimens that 
were tested with no crack support (indicated by footnote c in table II). 

The dashed curve in figure lO(a) is the result  of calculating fracture s t r e s s  from 
equation (l),which is for an infinitely wide cracked sheet., the crack length is not cor­
rected for the presence of a yield zone a t  the crack tip. An examination of this curve, 
which predicts fracture s t r e s s  by neglecting the influence of the plastic zone and width 
correction te rms  in the calculation, discloses unconservative stress values. In fig­
u re  10(b), similar curves are presented using test data obtained at -320' F (77 K). The 
agreement between predicted and experimental values is good except for the two 6-inch­
(15.2-c1n-) wide specimens that were tested with insufficient crack support, as men­
tioned in the section TEST APPARATUS AND PROCEDURES. These data a r e  indicated 
by footnote b in table 11. Curves to predict f racture  s t r e s s  by using Kcn were not drawn 
in figure 11because the values of Kcn shown in figure 9 were continuously varying (and 
therefore no constant value w a s  determinable) a t  both the -320' and -423' F (77 and 20 K) 
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I I I 1 I I l l 1 I d 
(a) Test temperature. -423" F (20 K). 

17C 

175 16C 
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(b) Test temperature, -320" F (77 K). 

Figure 9. - Nominal fracture toughness as function of initial 
crack length for 0.022-inch- (0.056-cm-) thick AIS1 301 
60-percent cold-reduced stainless steel. Specimen orien­
tation, 11" to rolling direction. 
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(b) Test temperature, -320" F (77 K). 

Figure 10. - Fracture stress as function of critical crack length for 0.022-inch- (0.056-cm4 thick 
AIS1 301 @-percent cold-reduced stainless steel. Specimen orientation, 11' to rolling direction. 
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Figure 11. - Fracture stress as function of initial crack length for 0.022-inch- (0.056-cm4 
thick AIS1 301 64-percent cold-reduced stainless steel. Specimen orientation, 11" to 
rolling direction; curves faired through data points. 
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test temperatures. However, curves were faired through the data points. The data for  
the 6-inch- (15.2-cm-) wide specimens with the longer cracks are seen to  be relatively 
low, which is believed to  be, at least in part, the result  of insufficient crack support. 

SUMMARY OF RESULTS 

The measured fracture  toughness values of A I S  301 stainless-steel 60-percent cold-
reduced 0.022-inch- (0.056-cm-) thick sheet at -320' and -423' F (77 and 20 K) did not 
vary significantly with specimen widths from 3 to  12 inches (7.6 to  30. 5 cm) or  with crack 
lengths from 0. 150 to  4.32 inches (0.381 to  10.98 cm). It is thus reasonable to  conclude 
that a 3-inch- (7.6-cm-) wide specimen is sufficient to determine a valid plane-stress 
f racture  toughness for this material  and thickness. The average toughness at 11' to  the 
rolling direction w a s  207 k s i c  (227 MNm -3/2) at -320' F (77 K) and 178 k s i F  
(195 MNm-3/2) a t  -423' F (20 K). 

Investigation of the effect of varying specimen orientation with respect t o  rolling di­
rection showed variations in mechanical properties. AS the specimen orientation ap­
proached the t ransverse direction, the yield and ultimate strengths, in general, showed a 
gradual increase. The average transverse yield strength a t  -423' F (20 K) w a s  deter­
mined to  be 293 ksi  (202 kN/cm 2), which represented a 14-percent increase when com­
pared with the average longitudinal value of 258 ksi  (178 kN/cm 2). A similar  comparison 
of the -320' F (77 K) data resulted in a l l -percent  increase when the longitudinal value of 
230 ksi  (159 kN/cm2) w a s  compared with 255 ksi  (176 kN/cm 2) for  the t ransverse direc­
tion. Only slight variations appeared in the room temperature data for those orientations 
tested. 

However, of more significance w a s  the effect of angle to  rolling direction on net 
fracture strength of the cracked specimens. The longitudinal net fracture strength of 
165 ksi  (114 kN/cm 2) at -423' F (20 K) represents approximately 90 percent of the room 
temperature value. However, a decrease to 103 ksi  (71.0 kN/cm 2), representing only 
65 percent of the room temperature value, w a s  noted for  the t ransverse direction. When 
compared with the room temperature results, the t rends for the data obtained a t  -320' F 
(77 K) were analogous to  those obtained a t  -423' F (20 K). 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 28, 1969, 
124-08-08- 19-22. 
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